Notes on Extremal Approximately Convex Functions and Estimating the Size of Convex Hulls

نویسندگان

  • S. J. DILWORTH
  • RALPH HOWARD
  • JAMES W. ROBERTS
چکیده

This is a set of notes that is basically and expanded version of the paper Extremal Approximately Convex Functions and Estimating the Size of Convex Hulls. The differences are a few extra pictures, Section 2.7 which is an exposition of results of Ng and Nikodem [5] about measurable approximately convex functions, and an alternate proof of Theorem 2.27 is included. Contents 1. Introduction 2 2. Approximately Convex Functions 4 2.1. Bounds on approximately convex functions 5 2.2. Lower semi-continuity and mean value properties of extremal approximately convex functions 7 2.3. The extremal approximately sub-affine function H(x) 12 2.4. The extremal approximately convex function E(x) on a simplex 19 2.5. Extremal approximately convex functions on convex polytopes 28 2.6. A stability theorem of Hyers-Ulam type 29 2.7. Measurable approximately convex functions 30 2.8.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extremal Approximately Convex Functions and Estimating the Size of Convex Hulls

A real valued function f defined on a convex K is an approximately convex function iff it satisfies

متن کامل

Convex Generalized Semi-Infinite Programming Problems with Constraint Sets: Necessary Conditions

 We consider generalized semi-infinite programming problems in which the index set of the inequality constraints depends on the decision vector and all emerging functions are assumed to be convex. Considering a lower level constraint qualification, we derive a formula for estimating the subdifferential of the value function. Finally, we establish the Fritz-John necessary optimality con...

متن کامل

On Fejér Type Inequalities for (η1,η2)-Convex Functions

In this paper we find a characterization type result for (η1,η2)-convex functions. The Fejér integral inequality related to (η1,η2)-convex functions is obtained as a generalization of Fejér inequality related to the preinvex and η-convex functions. Also some Fejér trapezoid and midpoint type inequalities are given in the case that the absolute value of the derivative of considered function is (...

متن کامل

Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions

Hermite-Hadamard inequality is one of the fundamental applications of convex functions in Theory of Inequality. In this paper, Hermite-Hadamard inequalities for $mathbb{B}$-convex and $mathbb{B}^{-1}$-convex functions are proven.

متن کامل

A generalized form of the Hermite-Hadamard-Fejer type inequalities involving fractional integral for co-ordinated convex functions

Recently, a general class of the Hermit--Hadamard-Fejer inequality on convex functions is studied in [H. Budak, March 2019, 74:29, textit{Results in Mathematics}]. In this paper, we establish a generalization of Hermit--Hadamard--Fejer inequality for fractional integral based on co-ordinated convex functions.Our results generalize and improve several inequalities obtained in earlier studies.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998